Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

1
2
3
4
5
6
7
8
9
Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

0
/ \
-3 9
/ /
-10 5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:

int getLen(ListNode* head) {
int len = 0;
while (head) {
head = head->next;
len++;
}
return len;
}

void helper(ListNode* head, int len, TreeNode* &root) {
if (len == 0) {
root = nullptr;
return ;
}

ListNode* now = head;
for (int i = (len - 1) >> 1; i > 0; i--) {
now = now->next;
}
root = new TreeNode(now->val);
TreeNode *left, *right;
helper(head, (len - 1) >> 1, left);
helper(now->next, len >> 1, right);
root->left = left;
root->right = right;
}

TreeNode* sortedListToBST(ListNode* head) {
TreeNode* root;
helper(head, getLen(head), root);
return root;
}
};