Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Example 1:

1
2
3
  2
/ \
1 3

Binary tree [2,1,3], return true.
Example 2:

1
2
3
  1
/ \
2 3

Binary tree [1,2,3], return false.

将BST的中序遍历的结果存起来然后判断是否有序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:

void travel(TreeNode* root, stack<int> &s) {
if (root == nullptr)
return;
travel(root->left, s);
s.push(root->val);
travel(root->right, s);
}

bool isValidBST(TreeNode* root) {
if (root == nullptr)
return true;

stack<int> s;
travel(root, s);

int last = s.top();
s.pop();

while(!s.empty()) {
if (s.top() >= last)
return false;
last = s.top();
s.pop();
}
return true;
}
};